Domain Adaptation for Ear Recognition Using Deep Convolutional Neural Networks

نویسندگان

  • Fevziye Irem Eyiokur
  • Dogucan Yaman
  • Hazim Kemal Ekenel
چکیده

In this paper, we have extensively investigated the unconstrained ear recognition problem. We have first shown the importance of domain adaptation, when deep convolutional neural network models are used for ear recognition. To enable domain adaptation, we have collected a new ear dataset using the Multi-PIE face dataset, which we named as Multi-PIE ear dataset. To improve the performance further, we have combined different deep convolutional neural network models. We have analyzed in depth the effect of ear image quality, for example illumination and aspect ratio, on the classification performance. Finally, we have addressed the problem of dataset bias in the ear recognition field. Experiments on the UERC dataset have shown that domain adaptation leads to a significant performance improvement. For example, when VGG-16 model is used and the domain adaptation is applied, an absolute increase of around 10% has been achieved. Combining different deep convolutional neural network models has further improved the accuracy by 4%. It has also been observed that image quality has an influence on the results. In the experiments that we have conducted to examine the dataset bias, given an ear image, we were able to classify the dataset that it has come from with 99.71% accuracy, which indicates a strong bias among the ear recognition datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018